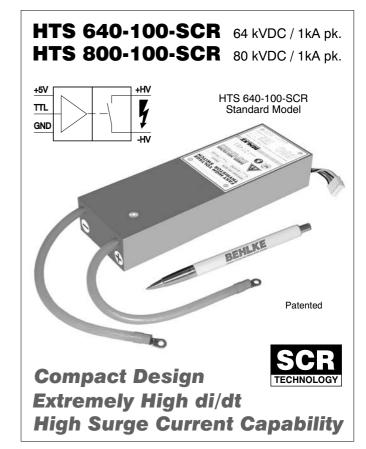
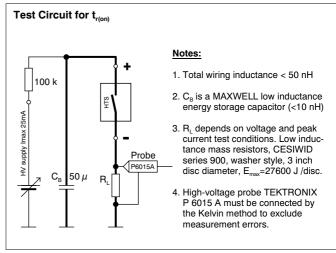
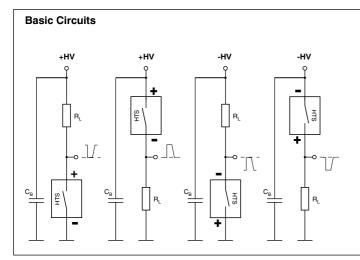
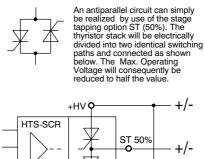
FAST HIGH VOLTAGE THYRISTOR SWITCHES

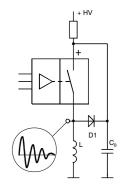

These solid-state switches are designed for high voltage high peak current switching applications such as shock wave generators, flash lamp drivers, crow bar circuits and surge generators. The switching modules contain a large number of reverse blocking thyristors (SCR) connected in series and in parallel. Each single thyristor is controlled by its own low-impedance gate drive, which allows an extremely large di/dt without reduction of reliability and life expectancy.


The safe and synchronous control of all SCR's is performed by a patented driver which also provides the high galvanic isolation necessary for high-side circuits and safety-relevant applications.


In contrast to conventional high voltage switches like spark gaps, electron tubes, gas discharge tubes and mechanical switches, thyristor switches of the HTS-SCR series show very low jitter and stable switching characteristics independent of temperature and age. The mean time between failures (MTBF) is by several orders of magnitude higher than that of the classical HV switches.


An interference-proof control circuit provides signal conditioning, auxiliary voltage monitoring, frequency limitation and temperature protection. In case of false operating conditions the switches are immediately inhibited and a fault signal is generated. Three LED's indicate the operating state.

The switches are triggered by a positive going pulse of 3-6 Volts. The switching behaviour will not be influenced by the trigger rise time or the trigger amplitude. After being triggered the switches remain in on-state until the load current drops below the holding current (typical thyristor behaviour). Therefore the turn-off process requires a current commutation, a current limitation or a current bypass. Capacitor discharge applications with charging currents less than the holding current do not require special turn-off measures. In all other cases the switches can be turned off by a slight current reversal, which is given in most pulsed power applications anyway. If the current reversal is higher than 10% and if the periodic duration of the current is shorter than 1 ms, a free-wheeling diode (e.g. Behlke FDA) must be used to avoid hard turn-off, which can damage the switching module under certain circumstances. Please also compare application note below. For further design recommen-dations please refer to the general instructions for use.



Antiparallel Circuit using Option ST

Inductive Load

Note: D1 is a fast recovery diode with kiloamps peak current capability, e.g. Behlke FDA 640-xxx or FDA 800-xxx

TECHNICAL DATA

Specification	Symbol	Condition / Comment		640-100-SCR	800-100-SCR	Unit
Maximum Operating Voltage	V _{O(max)}	I _{off} < 250 σADC, T _{case} = 70°C		64	80	kVDC
Minimum Operating Voltage	$V_{O(min)}$	Increased turn-on rise time at low operating voltages			0	kVDC
Typical Breakdown Voltage	V_{br}	$I_{\text{off}} > 3 \text{ mADC}, \ T_{\text{case}} = 70 \text{ °C}$		72	88	kVDC
Maximum Off-State Current	I _{off}	0.8xV _O , T _{case} = 25°C, lower leakage current on request		1:	50	μADC
Galvanic Isolation	Vı	HV side against control side, continuously		70	90	kVDC
Maximum Turn-On Peak Current	I _{P(max)}	T _{case} =25°C, half sine	t_p <100 µs, duty cycle <1%	10	000	
		single pulse. Please	t_p <500 µs, duty cycle <1%	80	00	
		note $P_{d(max)}$ limitations!	t _p <1 ms, duty cycle <1%	6	50	
			t _p <10 ms, duty cycle <1%	2	40	
			t _p <100ms, duty cycle <1%	1	15	ADC
Max. Non-repetitive Peak Current	I _{P(nr)}	T _{case} =25°C		Please consult factory		ADC
Max. Continuous Load Current	IL	T _{case} =25°C Increased I _L on request		0.7		ADC
Typical Holding Current	I _H		T _{case} = 25°C	10	00	
			T _{case} = 70°C	7	70	mADC
Typical On-State Voltage	V_{sat}	T _{case} = 25°C	0.001 x I _{P(max)}	29	36	
		$t_p < 10 \mu s$,	0.01 x I _{P(max)}	34	42	
		duty cycle <1%	0.1 x I _{P(max)}	86	108	
			1.0 x I _{P(max)}	480	600	VDC
Typical Turn-On Delay Time	t _{d(on)}	0.1 I _{P(max)} , 0.8 x V _{O(max)} re	` ′	200	210	ns
Typical Turn-On Rise Time	t _{r(on)}	Resistive load,	0.1 x V _{O(max)} , 0.1 x I _{P(max)}	880	900	110
Typical rulli Official Time	'r(on)	10-80 %	$0.8 \times V_{O(max)}$, $0.1 \times I_{P(max)}$	130	150	
		10 00 70	$0.8 \times V_{O(max)}$, $0.5 \times I_{P(max)}$	220	240	
			$0.8 \times V_{O(max)}$, $0.0 \times I_{P(max)}$	270	310	ns
Tarabas Off Tires		Ladour Constant of Obstant				113
Typical Turn-Off Time	t_{off}, t_{q}	Inductive load with free-		40 100		
Critical Rate-of-Rise of Off-State Voltage	dv/dt	wheeling diode	1.0 x I _{P(max)}	96	120	μs kV/μs
Maximum On-Time		V _{O(max)} , exponential waveform Please note P _{d(max)} limitations!				κν/μδ
Typical Turn-On Jitter	t _{on(max)}	$V_{aux} / V_{tr} = 5.00 \text{ VDC}$		Infinitely if I _L > I _H		nc
Max. Switching Frequency	t _{j(on)}	Please note P _{d(max)} limitations!		6	5	ns kHz
Maximum Burst Frequency	f _(max)	HFB option required, @ 0.1 x I _{P(max)}			20	kHz
Max. Continuous Power Dissipation	f _{b(max)}	$T_{case} = 25^{\circ}$ C, increased $P_{d(max)}$ on request. Power		2		NI IZ
	$P_{d(max)}$	losses are determined by $P_{d, S} V_{sat} \times I_{L} \times S$ duty factor		20	24	Watts
Linear Derating			7 I d 3 V sat X IL X duty lactor			
•	_	Above 25°C		0.444 0.533		W/K °C
Operating Temperature Range	T _O	Extended temperature range on request		-4070 -5090		_
Storage Temperature Range	Ts					°C
Coupling Capacitance	C _C	HV side against control side		30	35	pF
Auxiliary Supply Voltage	V _{aux}	Stabilized to 3 5% (3 1% recommended for low jitter)		5.00 (∂ 5%)		VDC
Auxiliary Supply Current	l _{aux}	@ f _(max) current limitation to < 1A is recommended		600		mADC
Trigger Pulse Voltage Range	V _{tr}	Trigger signals above 5 VDC are clamped internally		3-6		VDC
Minimum Trigger Pulse Width		Trigger pulse has no influence on switching behaviour		> 50		ns
Fault Signal Output Voltage		Output goes low if V_{aux} < 4.75 VDC, if T_0 > 75°C or if		Low: < 0.5 VDC		
		f _(max) or f _{b(max)} is exceeded substiantally		High: > 4 VDC		
Fault Signal Output Load		Sink / source current. Output is short circuit proof.		10		mADC
LED Indicators		Green: Power / Ready				
		Yellow: Flashes when triggered successfully				
			mentioned fault conditions			
Typ. Insulation Strength of Housing	V _{Ins}	Caution: Keep appropriate distance between module				
<u> </u>		housing and all conductive elements of the set-up! Standard case, other housing dimensions on request		20		kVDC
Dimensions			206x70x35	250x70x35	mm ³	
Weight		Standard case, reduced	880	1020	g	

Ordering Information

HTS 640-100-SCR Thyristor switch, 64 kVDC, 1000 A (pk) Option LP Low pass at trigger input

HTS 800-100-SCR Thyristor switch, 80 kVDC, 1000 A (pk) Option ST Stage tapping (pls. indicate the tapping position in %)

Option HFB High frequency burst Option UL94-V0 Flame retardend casting resin UL94-V0

All data and specifications subject to change without notice. Custom designed devices on request.

800-100-SCR-10.01