Startseite / Produkte / Hochspannung / HV Aktiv-Komponenten / Festkörperschalter / C3 variable Einschaltdauer, geringe Kopplungskapazität, MOSFET
HV-Schalter, variable Einschaltdauer, geringe Kopplungskapazität, MOSFET
Die Schalter der Produktgruppe C3 sind hinsichtlich der Koppelkapazitäten gegenüber der Steuerseite und Masse optimiert. Eine niedrige Koppelkapazität ist der Schlüssel für einen effizienten Betrieb bei hohen Wiederholraten. Reduzierte Koppelkapazitäten sind auch im Hinblick auf geringe Störaussendung, gutes EMV-Verhalten, stabilen Betrieb und hohe Schaltgeschwindigkeit wünschenswert. Sowohl LC- als auch LC2-Schalter erfüllen diese Anforderungen sehr gut. Wenn es aber um höchste Schaltfrequenzen (> 300 kHz) geht, dann sind die Schalter der Serie LC die bevorzugte Wahl. Der Nachteil der LC-Reihe ist ihre begrenzte Transientenfestigkeit, die sie relativ empfindlich gegenüber Funkenüberschlägen, Kurzschlüssen, instabiler Last und instabiler Eingangsspannung macht. Im Gegensatz dazu sind die Schalter der Serie LC2 für moderate Schaltfrequenzen (< 300 kHz) unter rauen Betriebsbedingungen ausgelegt.)
Ausstattung:
- Vielseitiger HV-Schalter mit echtem Relaischarakter
- Einschaltzeit durch TTL-Signal steuerbar
- LC2-Technologie für höchste Transienten-Immunität
LC2-Schalter. Leistungsstark, robust und transientenfest.
LC-Schalter. Bevorzugt in Hochfrequenzanwendungen mit geringer kapazitiver Last.
Optionen | Beschreibung |
B-CON | Konfiguration für Einsteiger: Der Standardschalter ist mit verschiedenen Optionen ausgestattet, um die ersten Experimente für Benutzer zu vereinfachen, die noch keine Erfahrung mit Hochspannungs- und Hochfrequenzschaltungen haben. Die Einsteigerkonfiguration umfasst die Optionen FH und PT-HV für eine einfache Verdrahtung und Befestigung ohne Leiterplatten |
HFB | Hochfrequenz-Burst: Verbesserte Burst-Fähigkeit des Treibers durch externe Pufferkondensatoren. Empfohlen, wenn mehr als 10 Pulse mit weniger als 10 μs Abstand erzeugt werden. |
HFS | Hochfrequenzschaltung: Externe Versorgung mit Hilfstreiberspannung (50-350 VDC je nach Typ). Erforderlich, wenn die angegebene "Maximale Betriebsfrequenz" überschritten werden soll. (2) |
LP | Tiefpass: Tiefpassfilter am Steuereingang. Die Ausbreitungsverzögerungszeit wird um ~50 ns erhöht. Jitter + 500 ps. Verbesserte Rauschimmunität und weniger kritische Verdrahtung bei Hochgeschwindigkeitsanwendungen. (3) |
FAST | Schnellere Schaltzeiten (-30 bis -40%) aufgrund der erhöhten Treiberleistung. Die minimalen Einschaltzeiten werden um etwa 40 bis 50% reduziert. Nur für ausgewählte Hochstromschalter. Bitte fragen Sie im Werk nach. (2) |
MIN-ON | Mindest-Einschaltdauer: Individuell erhöhte Mindest-Einschaltdauer, um eine Mindest-Einschaltdauer unabhängig vom Steuersignal zu gewährleisten. Für sicherheitsrelevante Schaltungen. |
MIN-OFF | Mindestausschaltzeit: Individuell erhöhte Mindestausschaltzeit zur Gewährleistung einer Mindestausschaltdauer unabhängig vom Steuersignal. Für sicherheitsrelevante Schaltungen. |
S-TT | Weiche Übergangszeit: "Turn-On Rise Time" & "Turn-Off Rise Time" um ~20% erhöht. Vereinfachtes EMV-Design und weniger kritische Verdrahtung, wenn die kürzestmögliche Flankensteilheit nicht erforderlich ist. (3) |
LL | Niedriger Leckstrom: Der Ruhestrom ist auf weniger als 10 % des angegebenen Wertes reduziert. Nicht verfügbar in Verbindung mit den Kühlrippenoptionen und für Schalter der UF-Serie. |
LN | Rauscharm: Interner Leistungstreiber, der so modifiziert ist, dass er für eine bestimmte Zeit kein Rauschen erzeugt. Nur in Verbindung mit empfindlichen Detektorverstärkern (z. B. SEV/MCP-Anwendungen) relevant. (2) |
ISO-25 | 25 kV Isolierung: Die Isolationsspannung wurde auf 25 kVDC erhöht. Die Gehäuseabmessungen können sich bei einigen Modellen ändern. |
ISO-40 | 40 kV Isolierung: Die Isolationsspannung wurde auf 40 kVDC erhöht. Die Gehäuseabmessungen können sich bei einigen Modellen ändern. Nur in Verbindung mit der Option PT-HV. |
ISO-80 | 80 kV Isolierung: Die Isolationsspannung wurde auf 80 kVDC erhöht. Die Gehäuseabmessungen können sich bei einigen Modellen ändern. Nur in Verbindung mit der Option PT-HV. |
ISO-120 | 120 kV Isolierung: Die Isolationsspannung wurde auf 120 kVDC erhöht. Die Gehäuseabmessungen können sich bei einigen Modellen ändern. Nur in Verbindung mit der Option PT-HV. |
ISO-200 | 200 kV Isolierung: Die Isolationsspannung wurde auf 200 kVDC erhöht. Die Gehäuseabmessungen können sich bei einigen Modellen ändern. Nur in Verbindung mit der Option PT-HV. |
I-PC | Integrierte Bauteilkomponenten: Integration von Kleinteilkomponenten nach Kundenspezifikation (z.B. Pufferkondensatoren |
I-FWD | Integrierte Freilaufdiode: Eingebaute parallele Diode mit kurzer Erholungszeit. Nur in Verbindung mit induktiver Last. |
I-FWDN | Integriertes freilaufendes Diodennetzwerk: Eingebaute parallele Diode plus serielle Sperrdiode mit kurzer Erholungszeit. Nur in Verbindung mit induktiver Last. |
LS-C | LEMO-Buchse für Steueranschluss. Eingangsimpedanz 100Ω. Ein konfektioniertes Verbindungskabel (1m/3ft) mit zwei Steckern und einer zusätzlichen Buchse ist im Lieferumfang enthalten. Verbesserte Rauschimmunität. (3) |
PT-C | Pigtail für Steueranschluss: Flexible Leitungen (l=75 mm) mit PCB-Stecker. Diese Option ist nur für Schaltmodule mit Stiften relevant. Empfohlen für Module mit den Optionen CF & GCF. |
PT-HV | Pigtails für HV-Anschluss: Flexible Leitungen mit Kabelschuhen. Für erhöhte Kriechfähigkeit. PT-HV ist Standard für alle Typen mit >25 kV Schaltspannung. Nicht empfohlen in extrem schnellen Stromkreisen. |
ST-HV | Schraubklemmen für HV-Anschluss: Gewindeeinsätze an der Unterseite des Moduls (wenn nicht Standard). Für PCB-Design. Betrieb über 25 kV erfordert Flüssigisolierung (Galden®/Öl) oder Verguss. |
SEP-C | Separate Steuereinheit. Steuergerät mit LED-Anzeigen in einem separaten Gehäuse (Abmessung 79x38x17 mm). Verbindungskabel (<1m) with plug. Control unit with soldering pins or pigtails. |
FOI-I | Glasfasereingang / Sperre: Zusätzlicher optischer Sperreingang zum Ausschalten des Schalters durch Verwendung des Sperreingangs mit einem faseroptischen Signal (nur in Verbindung mit Option SEP-C) (2) |
FOI-C | Glasfasereingang / Steuerung: Zusätzlicher optischer Steuereingang zur Ansteuerung des Schalters mit einem faseroptischen Signal (nur in Verbindung mit Option SEP-C) (2) |
FOO-F | Faseroptischer Ausgang / Störung: Zusätzlicher optischer Ausgang zum Auslesen des Fehlerzustandes mit einem faseroptischen Signal (nur in Verbindung mit Option SEP-C) (2) |
UL94 | Flammhemmendes Gießharz: Gießharz gemäß UL-94-VO. Mindestbestellmenge erforderlich. (2) |
FH | Flanschgehäuse: Kunststoff-Flanschgehäuse zur isolierten Befestigung an leitenden Oberflächen. Ideal, wenn der Schalter nicht für Leiterplatten vorgesehen ist. Die Option PT-HV wird empfohlen. |
TH | Rohrförmiges Gehäuse: Rohrförmiges anstelle eines rechteckigen Gehäuses. Anpassung an spezifische Umgebungsbedingungen oder bei schwierigen Einbausituationen. (2) |
FC | Flaches Gehäuse: Höhe von Standard-Kunststoffgehäusen auf 19 mm oder weniger reduziert. Nicht in Kombination mit Kühloptionen CF |
ITC | Erhöhte Wärmeleitfähigkeit: Spezielles Gussverfahren zur Erhöhung der Wärmeleitfähigkeit des Moduls. Pd(max) wird um ca. 20-30% erhöht. (2) |
CF | Kupfer-Kühlrippen d = 0,5 mm: Lamellenhöhe 35 mm. Vernickelt. Für Luftkühlung mit erzwungener oder natürlicher Konvektion sowie für Flüssigkeitskühlung mit nichtleitenden Kühlmitteln. |
CF-1 | Kupfer-Kühlrippen d = 1 mm: Lamellendicke 1,0 mm anstelle von 0,5 mm. Die max. Verlustleistung Pd(max) wird um ~80 % erhöht. Für Luft- oder Flüssigkeitskühlung (z. B. Galden® oder Öl). |
CF-X2 | "Kupfer-Kühlrippen "XL"": Um den Faktor 2 vergrößerte Lamellenfläche. Empfohlen für natürliche Luftkonvektion. Keine wesentliche Verbesserung der Kühlleistung in Verbindung mit forcierter Luft- oder Flüssigkeitskühlung." |
CF-X3 | "Kupfer-Kühlrippen "XXL"": Um den Faktor 3 vergrößerte Lamellenfläche. Empfohlen für natürliche Luftkonvektion. Keine wesentliche Verbesserung der Kühlleistung in Verbindung mit forcierter Luft- oder Flüssigkeitskühlung." |
CF-CS | Kühlrippen aus Kupfer mit kundenspezifischer Form: Individuelle Form zur Erfüllung spezifischer OEM-Anforderungen. (2) Kann mit den Optionen CF-1 kombiniert werden |
CF-LC | Kühlrippen aus Kupfer für die Flüssigkeitskühlung: Doppelte Lamellen |
CF-D | Doppelte Kühlrippen aus Kupfer: Ca. 100% mehr Kühlleistung |
CF-S | Kühlrippen aus Kupfer: Halbleiter auf Lamellen gelötet. Ca. 30% bis 100% mehr Kühlleistung (je nach Typ). Kombinierbar mit den Optionen CF-D |
CF-GRA | Nicht isolierte Kühllamellen aus Graphit: Sehr geringes Gewicht im Vergleich zu Kupfer bei ähnlicher Wärmeübertragung |
CF-CER | Isolierte Kühlrippen aus Keramik: Wärmeübertragungseigenschaften ähnlich wie bei Aluminiumoxid. Zwangskonvektion empfohlen durch 2 mm Abstand zwischen den Lamellen. Höhe 35 mm. |
CCS | Keramische Kühlfläche: Die Oberseite des Schaltmoduls besteht aus Keramik. Wärmeübertragungseigenschaften ähnlich wie Tonerde. Max. 20 kVDC Isolierung. Erzwungene Konvektion empfohlen. |
CCF | Keramik-Kühlflansch: Die Unterseite des Schaltmoduls besteht aus einer plan geschliffenen Keramikplatte. Integrierter Metallrahmen für gleichmäßigen und sicheren Anpressdruck. Max. 40 kVDC Isolierung. |
C-DR | Kühlung für den Fahrer: Zusätzliche Kühlung für den Treiber und die Steuerelektronik. Empfohlen in Kombination mit der Option HFS bei höheren Schaltfrequenzen. (2) |
GCF | Geerdeter Kühlungsflansch: Vernickelter Kupferflansch für mittlere Leistungen. Max. Isolationsspannung 40kV. Erhöhte Kopplungskapazität CC. |
GCF-X2 | Geerdeter Kühlungsflansch |
ILC | Indirekte Flüssigkeitskühlung: Flüssigkeitskühlung für alle Arten von leitfähigen Kühlmitteln einschließlich Wasser. Interner Wärmetauscher aus Keramik. Für mittlere Verlustleistung. |
DLC | Direkte Flüssigkeitskühlung: Interne Kühlkanäle um die Leistungshalbleiter herum. Die effizienteste Kühlung für Hochfrequenzanwendungen. Nur nicht-leitende Kühlmittel. |
HI-REL | Hochzuverlässige / MIL-Versionen: Auf Anfrage erhältlich. (2) |
[1] | Neuer Optionscode: Datenblätter können von diesem Kodierungssystem abweichen (insbesondere ältere) und geben nicht alle möglichen Optionen gemäß obiger Tabelle an. |
[2] | Für detaillierte Informationen wenden Sie sich bitte an das Werk. |
[3] | Diese Optionen sind EMV-relevant und werden für industrielle Stromanwendungen empfohlen |